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1 Introduction

The Landau problem in the noncommutative plane belongs to a family of non-relativistic

systems with so called “exotic” symmetries, meaning that the symmetry algebras have two

central charges. This is possible only in d = 2 + 1 dimensions; for d 6= 2 + 1, the mass

is the unique central charge [1].1 Examples of doubly centrally extended symmetries are

provided by exotic Galilei [3–9], and exotic Newton-Hooke (ENH) [10–12] symmetries. In

both cases, the second central charge corresponds to the non-commutativity of the boost

generators. The non-commutative Landau problem (NCLP) carries, in particular, an exotic

Newton-Hooke symmetry [13], which becomes exotic Galilean symmetry in the free limit.

The NCLP was investigated in the context of the quantum Hall effect [7], and the

physics of anyons [14]. In the spinless case it possesses three different phases [14],2 namely

a sub- (β < 1) and a super- (β > 1) critical ones, separated by a critical phase when

β = 1. Here β = θB the product of the (homogeneous) magnetic field B = const and

the non-commutativity parameter θ is a dimensionless parameter. The critical phase is

characterized by a loss of degrees of freedom. In the generic case of inhomogeneous magnetic

field B(x), all three phases can simultaneously be present in total phase space.

Non-relativistic conformal symmetry [17–19] is attracting much current attention, par-

ticularly in the context of the AdS/CFT correspondence [20, 21]. The usual (θ = 0) Lan-

dau problem has non-relativistic conformal symmetry. This raises the following question:

What happens with this symmetry in the noncommutative case? A priori, the answer is

1In the relativistic case all central extensions are trivial (central charges can be absorbed by redefining

the generators) [2].
2Sub- and super-critical phases were discussed before in ref. [15]. The framework used there, however,

is only consistent if the magnetic field is homogeneous, see [16]. Neither conformal nor supersymmetric

extensions are considered in that paper.
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not obvious. The reason is that conformal symmetry involves scale invariance, while the

noncommutativity parameter, θ, introduces an independent length scale, [θ] = ℓ2, in addi-

tion to those associated with the mass parameter and the magnetic field. Scale invariance,

nevertheless, could be expected in the sub-critical phase, whose properties are, in many

aspects, similar to those of the usual Landau problem with θ = 0. But it is not clear

what happens with this symmetry in the super-critical phase, and for a spin-1/2 particle

in particular.

The commutative Landau problem for a non-relativistic electron with spin 1

2
has an

N = 2 supersymmetry [22], see also [23], and the conformal so(2, 1) symmetry is ex-

tended into a superconformal osp(2|2) symmetry, with the angular momentum as central

charge [18, 24]. However, in the NCLP, the angular momentum behaves in an essentially

different way in the sub- and super- critical phases: it takes values of both signs for β < 1,

but values of only one sign (depending on the sign of magnetic field) when β > 1 [14].

The present paper is devoted to the investigation of the symmetries of the super-

extended NCLP for a spin-1/2 particle of gyromagnetic ratio g = 2.3

The paper is organized as follows. In section 2 we start with an arbitrary magnetic

field and in section 3 we restrict our considerations to a homogeneous one. We discuss

the three phases of the system and the differences between them. Section 4 is devoted to

the investigation of the super-symmetries of the system, related to exotic Newton-Hooke

symmetry and its extension by adding dilatations and expansions. In section 5 we switch to

an alternative basis of quadratic generators that allow us to reveal the essential difference

between the sub- and super- critical phases from the viewpoint of conformal symmetry.

Section 6 summarizes the results.

2 N = 2 supersymmetry: arbitrary magnetic field

The first order Lagrangian of a spinless “exotic” particle in an arbitrary planar magnetic

field B = B(x) [7, 13],

L = Piẋi −
1

2m
P 2

i − θ

2
ǫijṖiPj −

B

2
ǫijẋixj , (2.1)

corresponds, at the quantum level, to the commutation relations,

[xi, xj ] = i
θ

1 − β
ǫij , [xi, Pj ] = i

1

1 − β
δij , [Pi, Pj ] = i

B

1 − β
ǫij, (2.2)

where ǫij is the antisymmetric tensor with ǫ12 = 1.4 The parameter θ is related to the

noncommutativity of the coordinates and has the dimension of a squared length ℓ2. The

dimension of the magnetic field, B(x), is ℓ−2. β = β(x) = θB(x) is then dimensionless.

3For previous works on non-commutative supersymmetry the reader is referred to [25–31], where the

superextension of exotic Galilei and Schrödinger symmetries, and some aspects of superextended NCLP were

discussed. Questions related to the super-extension of conformal and exotic Newton-Hooke symmetries for

the NCLP were not considered there.
4We have chosen units ~ = 1 = c and put the electric charge equal to one.
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Spin degrees of freedom are introduced by supplementing (2.2) with

{Si, Sj} =
1

2
δij , [Si, xj ] = 0, [Si, Pj ] = 0. (2.3)

The coordinates xi and momenta Pi are bosonic, while the spin-1/2 operators Si are

fermionic variables. The relations (2.2)–(2.3) specify a consistent quantum structure (Ja-

cobi identities hold for an arbitrary inhomogeneous magnetic field [16]).

In the critical case β = 1 the bosonic differential two-form associated with (2.2) be-

comes degenerate, and, in the spinless case, it requires special consideration [7, 14]. In

the superextended NCLP we consider below, the critical phase β = 1 will be obtained by

reducing the system to the (infinitely degenerate) zero energy subspace.

The fermionic operators

Q1 =

√

2

m
PiSi, Q2 =

√

2

m
ǫijPiSj (2.4)

generate an sl(1|1) superalgebra [32],

{Qa, Qb} = 2Hδab, [Qa,H] = 0, (2.5)

where

H =
1

2m
P 2

i − ωS3, ω =
B

m∗
, m∗ = m(1 − β), (2.6)

and S3 is defined by

S3 = −iǫijSiSj . (2.7)

Choosing H as the Hamiltonian, we get a system that generalizes the usual N = 2 su-

persymmetry of a spin-1/2 particle with gyromagnetic ratio g = 2 in arbitrary magnetic

field [32] to the non-commutative case. The operator S3, like the supercharges Qa, is an

integral of the motion, which acts as a Z2-grading operator Γ for the N = 2 supersymmetry,

Γ = 2S3, Γ2 = 1. One can choose, in particular, a representation where S3 is proportional

to the diagonal Pauli matrix, S3 = 1
2σ3.

3 Three phases of the superextended NCLP

From now on we consider a homogeneous field B = const 6= 0. It is convenient to define a

linear combination of the bosonic operators xi and Pi,

Pi = Pi − Bǫijxj . (3.1)

For nonzero magnetic field, the set formed by the Pi and Pi is an alternative to the initial set

of bosonic variables. The advantage is that the Pi commute with the Pj . From the form of

the Hamiltonian (2.6) we infer that Pi is an integral of the motion. Since [xi,Pj ] = iδij and

[Pi,Pj ] = −iBǫij, (3.2)
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the Pi, i = 1, 2, are identified as the non-commuting generators of space translations.

Another bosonic operator,

J =
1

2B

(

P2
i − (1 − β)P 2

i

)

+ S3 =
B

2

(

xi +
1

B
ǫijPj

)2

− 1 − β

2B
P 2

i + S3, (3.3)

is identified as the angular momentum, since it generates the rotations, [J,Ri] = iǫijRj for

Ri = xi, Pi, Si.

Putting εz = sgn(z), we define bosonic and fermionic creation and annihila-

tion operators

a+ = (a−)† =

√

|1 − β|
2 |B|

(

P1 − iεBε(1−β)P2

)

,

b+ = (b−)† =
1

√

2 |B|
(P1 + iεBP2) , (3.4)

f+ = (f−)† = S1 − iεBε(1−β)S2. (3.5)

Their nonzero (anti)-commutation relations are

[

a−, a+
]

= 1,
[

b−, b+
]

= 1,
{

f−, f+
}

= 1. (3.6)

The definition of the bosonic creation and annihilation operators depends, in view of (2.2)

and (3.2), on the signs of the magnetic field and of the quantity 1−β that defines the phase

of the system. The dependence is included into the definition of the fermionic operators.

This allows us to present the Hamiltonian in both the sub- (β < 1) and super- (β > 1)

critical phases in a universal form,

H = |ω| (Na + Nf ) . (3.7)

Here we introduced the bosonic, Na = a+a− and Nb = b+b−, and fermionic, Nf = f+f−,

number operators with eigenvalues na, nb = 0, 1, . . ., and nf = 0, 1, respectively. The

angular momentum reads,

J = εB

(

Nb +
1

2

)

− εBε(1−β) (Na + Nf ) . (3.8)

According to (3.7), in both non-critical phases the system has a typical N = 2 su-

persymmetric spectrum with zero ground state energy corresponding to na = nf = 0,

and supersymmetric energy doublets with quantum numbers na > 1, nf = 0, and na − 1,

nf = 1, respectively. Each energy level has an additional infinite degeneracy (nb = 0, 1, . . .),

associated with the translation invariance generated by the Pi.

On the other hand, eq. (3.8) reveals the essential difference between two non-critical

phases. In the subcritical phase, the angular momentum takes half-integer values of any

sign, while in super-critical phase it only takes half-integer values of one sign (the sign of

the magnetic field).

It is worth noting that the difference between the two non-critical phases reveals itself

also in another aspect. Proceeding from the quantum structure (2.2), one can construct

– 4 –



J
H
E
P
0
3
(
2
0
0
9
)
0
3
4

vector variables qi and pi with canonical commutation relations [qi, qj ] = [pi, pj ] = 0,

[qi, pj ] = iδij . Up to a unitary transformation, they can be presented in a simple form in

terms of the mutually commuting operators Pi and Pi,

qi =
1

B
ǫij

(

Pj −
√

1 − β Pj

)

, pi =
1

2

(

Pi +
√

1 − β Pi

)

. (3.9)

In the limit B → 0, qi becomes the canonical coordinate for a free particle on the non-

commutative plane, qi = xi + θ
2ǫijPj , and pi = Pi, see refs. [7–9]. Eq. (3.9) provides

us with canonical coordinates and momenta both in the sub- and supercritical phases.

However, in the super-critical case, unlike in the sub-critical phase, the operators (3.9)

are non-hermitian.

Consistently with eq. (2.6), in the limit β → 1 the frequency tends to infinity, |ω| →
∞. The critical phase β = 1 can be obtained by reduction of the system to the lowest

energy level E = 0, where na = nf = 0. In this phase the system is described by the

oscillator variables b± (non-commuting translation generators Pi), and H = 0. Taking into

account eqs. (2.7) and (3.5), we find that S3 = 1
2εBε(1−β), i.e. , the spin projection is fixed.

Curiously, its value depends on the phase from which the reduction is realized. In the

critical phase the spin degrees of freedom, like those associated with the bosonic oscillator

variables a±, are frozen, and supersymmetry disappears.

The Virasoro algebra can be realized in terms of the remaining bosonic integrals b± [33].

Restricting ourselves to integrals of degree not higher than 2 in the operators b±, provides

us with the symmetry algebra of the planar Euclidean group, spanned by the angular

momentum, J = εB(Nb + 1
2), and by the non-commuting translation generators Pi, see

eqs. (3.2) and (3.6).

In what follows we suppose β 6= 1.

4 Symmetries

Here we identify the other symmetries of the system in addition to those described in the

previous section. For this purpose, we consider the Hamiltonian equations of motion,

ẋi =
1

m∗
Pi, Ṗi = ωǫijPj , Ṡi = ωǫijSj . (4.1)

In the sub- and super- critical phases the evolution is of the same form, but (assuming a

given sign for the field B) the sign of the effective mass, m∗, (and of the frequency, ω,) is

opposite for β < 1 and β > 1. Remarkably, the same effect can be produced by a time

reflection, t → −t. The integration of the equations of motion gives,

xi(t) =
1

B

(

ǫijPj − ∆−1
jk (t)Pk(0)

)

, Pi(t) = ∆−1
ij (t)Pj(0), Si(t) = ∆−1

ij (t)Sj(0). (4.2)

Here ∆ij(t) = cos ωt δij − sin ωt ǫij is a rotation matrix, ∆−1
ij (t) = ∆ji(t) = ∆ij(−t) is its

inverse, and 1
B

ǫijPj = 1
B

ǫijPj(0) = xi(0) + 1
B

ǫijPj(0).

Now, we identify the boost generators as the integrals which, when acting on xi(0)

and ẋi(0), produce the necessary form of the infinitesimal transformations, [xi(0),Kj ] = 0,

– 5 –
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[ẋi(0),Kj ] = −iδij . This gives Ki = m∗ (xi (0) + θǫijPj (0)). Using the solution of the

equations of motion, the generators can be rewritten in terms of the variables xi and Pi,

Ki = m∗

(

xi +
1

B
ǫijρjkPk

)

, ρjk ≡ (δjk − (1 − β)∆jk (t)) . (4.3)

The boost generators (4.3) are dynamical integrals of motion in the sense that they explic-

itly depend on time, d
dt
Kj = ∂

∂t
Kj + 1

i
[Kj ,H] = 0.

For θ = 0, (4.3) reproduces correctly the boost generators of the usual Landau prob-

lem [34]. In the free case B = 0, (4.3) reduces to the boost generators of the free particle

in the non-commutative plane.

The commutators between Pi and Ki are given by

[Ki,Kj ] = −iθm∗2ǫij, [Ki,Pj ] = im∗δij , [Pi,Pj ] = −im∗ωǫij, (4.4)

and their commutation relations with H are

[Pi,H] = 0, [Ki,H] = i (Pi + ωǫijKj) . (4.5)

The bosonic integrals H, J , Pi and Ki generate the exotic Newton-Hooke symmetry algebra,

in which ω is a parameter, while C = m∗ and C̃ = θm∗2 are central charges [13]. The

commutators with the supercharges Qa show that they are translation-, but not boost-

invariant,

[Pi, Qa] = 0, [Ki, Qa] = i (δa1Σi + δa2ǫijΣj) . (4.6)

Here we have identified a new, fermionic vector generator Σi = (1 − β)
√

2mSi (0). This is

again a dynamical integral,

Σi = (1 − β)
√

2m∆ij (t)Sj. (4.7)

The anticommutation relations

{Σi,Σj} = Cδij , C = C − ωC̃ = m(1 − β)2 > 0, (4.8)

imply that Σi is the square root of a suitable positive definite linear combination of the

central charges.

The commutation relations of Σi with Ki, Pi, J and H are

[Σi,Kj ] = 0, [Σi,Pj ] = 0, [J,Σi] = iǫijΣj, [Σi,H] = iωǫijΣj. (4.9)

As it follows from (4.6), the Σi inherit the explicit time dependence of the Ki. The anti-

commutators with the supercharges Qa are

{Σi, Qa} = (δa1δij − δa2ǫij) (Pj + ωǫjkKk) . (4.10)

The integrals H, J , Pi, Ki, Qa and Σi generate a closed Lie-type superalgebra centrally

extended by C and C̃, in which the frequency, ω, plays the role of a parameter.

– 6 –
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Let us now inquire about conformal symmetry. To identify its generators, we first

consider the direct analogs of the dilatation and special conformal symmetry (expansion)

generators of a free particle [20],

D =
1

4m∗
(KiPi + PiKi) , K =

1

2m∗
K2

i . (4.11)

The commutation relations,

[K,H] = 2iD, [D,H] =
i

2

(

(2 − β) H + ω (J + (1 − β) S3 − ωK)
)

, (4.12)

[K,D] =
i

2

(

(2 − β) K − m∗θ (J − (1 − β)S3 + m∗θH)
)

, (4.13)

generalize the “exotic” relations found before for a free spinless “Moyal” field [19].

In contrast with the usual spinless and free case θ = B = 0, the commutators do not

close to an so(2, 1) algebra. But, since J and S3 commute with H, D and K, one could

conclude that we have a kind of central extension of so(2, 1). As we shall see below, this

is only true in the sub-critical phase, while in the super-critical phase the noncompact

so(2, 1) algebra is changed into the compact so(3). Since ω plays a role of a parameter

in Newton-Hooke symmetry, in the commutative case θ = 0 the relations (4.12), (4.13)

correspond to an so(2, 1) algebra, centrally extended by J + S3. In non-commutative case

θ 6= 0, however, we do not have a Lie-algebraic structure, due to the dependence of the

coefficients in (4.12) and (4.13) on the central charges of exotic Newton-Hooke symmetry.

In the next section we will consider an alternative choice of the generators that linearizes

a superalgebraic structure.

To identify the complete superalgebraic structure, we will also need the commutators of

D and K with the other generators of the super-extended exotic Newton-Hooke symmetry.

The commutators with Pi, Ki and Σi are

[K,Pi] = iKi, [K,Ki] = im∗θǫijKj , [K,Σi] = 0, (4.14)

[D,Pi] =
i

2
(Pi + ωǫijKj) , [D,Ki] =

i

2
m∗θǫij (Pj + ωǫjkKk) , [D,Σi] = 0, (4.15)

where, again, the nonlinearity is manifest. The commutators with the supercharges Qa,

[K,Qa] = iZa, [D,Qa] =
i

2

(

(1 − β)Qa + ωǫabZb

)

, (4.16)

generate a new set of the scalar supercharges Za,

Z1 =
1

m∗
KiΣi, Z2 =

1

m∗
ǫijKiΣj, (4.17)

with anticommutators

{Za, Zb} = 2(1 − β)δab (K + m∗θS3) . (4.18)

– 7 –
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The (anti)-commutation relations of Za with other symmetry generators,

[Za,H] = iQa,

[Za,K] = im∗θǫabZb,

[Za,D] =
i

2
(1 − β) (Za + m∗θǫabQb) , (4.19)

[Za,Pi] = i (δa1δij + δa2ǫij)Σj,

[Za,Ki] = im∗θ (δa1ǫij − δa2δij)Σj , (4.20)

{Za,Σi} = (1 − β) (δa1δij − δa2ǫij)Kj ,

{Za, Qb} = 2D δab − (J + (1 − β) S3 − ωK + m∗θH) ǫab, (4.21)

show that a closed super-algebraic structure is obtained, and no new independent integrals

are generated. In the commutative case θ = 0 this super-algebraic structure reduces to the

Schrödinger superalgebra studied in [18].

5 Alternative basis

In this section we show that, changing the basis of the conformal symmetry genera-

tors, the nonlinearity due to the presence of central charges in the coefficients in the

(anti)commutation relations can be removed, and we get a certain Lie-superalgebraic ex-

tension of the conformal symmetry. The linearization procedure can be extended to include

also the generators of translations and boosts, and the vector supercharge Σi. We consider

J 0 =
1

ω
H +

1

2
(J + S3), J 1 =

ε1−β

2
√

|1 − β|

(

2 − β

ω
H + J + (1 − β)S3 − ωK

)

,

J 2 =
1

√

|1 − β|
D, (5.1)

instead of H, D, K. Note that J 1 and J 2 depend nontrivially on the noncommutative

parameter θ via β. All three integrals (5.1) depend only on the bosonic variables a±, b±

but not on the fermionic operators f±,

J 0 =
1

2
εB(Nb + ε1−βNa) +

1

4
εB(1 + ε(1−β)), (5.2)

J 1
sub =

1

2
εB

(

a+(0)b+ + a−(0)b−
)

, J 2
sub =

−i

2

(

a+(0)b+ − a−(0)b−
)

, (5.3)

J 1
sup =

1

2
εB

(

a+(0)b− + a−(0)b+
)

, J 2
sup =

i

2

(

a+(0)b− − a−(0)b+
)

, (5.4)

where the subscripts sub and sup refer to the sub- and super- critical phases, and a±(0) =

a±e∓i|ω|t. The commutation relations of J µ, µ = 0, 1, 2, are given by

[

J 1,J 2
]

= −iε1−βJ 0,
[

J 2,J 0
]

= iJ 1,
[

J 0,J 1
]

= iJ 2. (5.5)

In the sub-critical case this is the so(2, 1) ∼ su(1, 1) algebra, but in the supercritical case

the operators (5.1) generate the so(3) ∼ su(2) algebra.

– 8 –
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Together with the new basis of bosonic generators, we define the following linear com-

binations of the scalar supercharges Qa and Za,

Q+
a =

1

2|ω|

(

(1 +
√

|1 − β|)Qa +
ω

√

|1 − β|
ǫabZb

)

,

Q−
a =

1

2|ω|ǫab

(

(1 −
√

|1 − β|)Qb −
ω

√

|1 − β|
ǫbcZc

)

. (5.6)

Then, in the sub-critical phase, we get the (anti)-commutation relations

{

Q+
a ,Q+

b

}

= 2εBδab

(

J 0 + J 1
)

,
{

Q−
a ,Q−

b

}

= 2εBδab

(

J 0 − J 1
)

, (5.7)

{

Q+
a ,Q−

b

}

= 2εB

(

δabJ 2 + ǫab
1

2
(J + S3)

)

, (5.8)

[

J 1,Q±
a

]

= − i

2
Q∓

a ,
[

J 2,Q±
a

]

= ± i

2
Q±

a . (5.9)

In the super-critical case we instead find

{

Q+
a ,Q+

b

}

= 2εBδab

(

1

2
(J + S3) − J 1

)

,
{

Q−
a ,Q−

b

}

= 2εBδab

(

1

2
(J + S3) + J 1

)

,

(5.10)
{

Q+
a ,Q−

b

}

= 2εB

(

ǫabJ 0 − δabJ 2
)

, (5.11)

[

J 1,Q±
a

]

= ∓ i

2
ǫabQ±

b ,
[

J 2,Q±
a

]

=
i

2
ǫabQ∓

b . (5.12)

In both phases, we also have,

[

J 0,Q±
a

]

= ± i

2
Q∓

a ,
[

S3,Q±
a

]

= iǫabQ±
b . (5.13)

Let us emphasise that all these relations are linear, as advertised.

Note that the commutators of the supercharges with J 0 are the same for the sub- and

super- critical phases, but those with J 1 and J 2 are different. The relations (5.7), (5.8)

and (5.10), (5.11) are transformed mutually under the change J 0 ↔ 1
2 (J +S3), J 1 ↔ −J 1

and J 2 ↔ −J 2.

The relations (5.5) and (5.7)–(5.13) show that the system is described by the centrally

extended supersconformal osp(2|2) symmetry in the sub-critical phase, and by the anal-

ogous Lie-superalgebraic extension of the compact so(3) symmetry in the super-critical

phase. In both cases the angular momentum J plays the role of central charge in these

superalgebras, while R = 2S3 is the generator of R-symmetry.

Let us take

E+
i =

√

|1 − β|
2|ω| Pi, E−

i =
1

√

2|ω|
(Pi + ωǫijKj) (5.14)

instead of the translation and boost generators. The nontrivial (anti)-commutators of the

integrals E±
i and Σi between themselves are given by (4.8) and

[E+
i , E+

j ] = − i

2
εBCǫij , [E−

i , E−
j ] =

i

2
εBε(1−β)Cǫij . (5.15)
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Their (anti)commutation relations with the rest of generators, J µ, J , S3 and Q±
α , are

[J 0, E±
i ] = ± i

2
ǫijE±

j , [J, E±
i ] = iǫijE±

j ,

[S3, E±
i ] = 0, (5.16)

[E+
i ,J µ] = − i

2
ε(1−β)

(

δµ1ǫij + δµ2δij

)

E−
j , [E−

i ,J µ] =
i

2

(

δµ1ǫij − δµ2δij

)

E+
j ,

µ = 1, 2, (5.17)

[S3,Σi] = iǫijΣj, [J,Σi] = iǫijΣj,

[J µ,Σi] = 0, (5.18)

[E+
i ,Q±

a ] =
i

2
εB (−δa1ǫij ± δa2δij)Σj, [E−

i ,Q±
a ] =

i

2
εBε(1−β) (±δa1ǫij ∓ δa2δij)Σj,

(5.19)

{Σi,Q+
a } = (δa1δij − δa2ǫij) (E+

j + E−
j ), {Σi,Q−

a } = (δa1ǫij + δa2δij) (E+
j − E−

j ).

(5.20)

The indices of the bosonic generators in (5.14) correspond to the signs in their commutators

with J 0 in (5.16).

According to (4.8) and (5.15), even, E±
i , and odd, Σi, the integrals generate the

superextended two-dimensional Heisenberg algebra with C as central charge, which, in

the commutative case θ = 0, becomes the mass, m. This is the unique central charge

of the resulting complete symmetry Lie superalgebra given by eqs. (4.8), (5.5), (5.7)–

(5.13), (5.15)–(5.20). For θ = 0 it provides us with an alternative form of the Schrödinger

superalgebra [18].

Let us emphasize that the linearization of the unified super-extended exotic Newton-

Hooke and conformal symmetries is achieved by inclusion of the dependence on θ in the

base changing coefficients. The noncommutativity parameter itself is a function of the

exotic Newton-Hooke symmetry central charges, θ = C̃/C2.

Note that while the scalar supercharges Q±
a generate via anticommutation relations

the even scalar integrals J µ and J +S3, their anticommutation relations with Σi reproduce

the even vector generators E±
i . The generator R = 2S3 of the R-symmetry is related to the

vector supercharge Σi via one of the Casimir operators of the superalgebra, iǫijΣiΣj +RC,

that takes here zero value.

6 Conclusion and outlook

Let us summarize our results.

We observed that the energy levels in all three phases are infinitely degenerate, due

to magnetic translation invariance. In the sub- and super- critical phases nonzero energy

levels reveal also an additional double degeneration, associated with N = 2 supersymmetry.

Due to supersymmetry, the critical boundary phase can be obtained by a simple reduction

of the system to the zero energy eigenspace. In this phase one bosonic and the spin degrees

of freedom are frozen, and SUSY disappears. The symmetry associated with the integrals
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of degree not higher than two in the residual bosonic oscillator variables corresponds to

the Euclidean group of motions in two dimensions, generated by non-commuting magnetic

translations and by rotations. The angular momentum generator takes here values of one

sign that coincides with that of the magnetic field.

The two non-critical phases have essentially different properties. Angular momentum

takes half-integer values of both signs in the sub-critical phase, but it takes half-integer

values of one sign only (correlated to the sign of the magnetic field) in the super-critical

phase. In both of these phases canonical vector coordinates and momenta can be con-

structed from the initial non-commuting coordinates and momenta. In the sub-critical

phase such operators are hermitian, but in the super-critical phase they are not hermitian.

In the sub-critical phase the bosonic part of the super-conformal symmetry is described by

the non-compact so(2, 1) ∼ su(1, 1) algebra. In the super-critical phase it is changed into

the compact so(3) ∼ su(2) algebra.

When we try to unify the two-fold central extension of the superextended Newton-

Hooke symmetry with super-conformal symmetry, the structure coefficients of the sym-

metry superalgebra transform into certain functions depending on central charges. Linear,

Lie-superalgebraic structure can be achieved via the change of the basis with coefficients de-

pending on the noncommutativity parameter θ. The resulting Lie superalgebraic structure

has only one central charge.

In ref. [12], it was shown that the exotic Newton-Hooke symmetry with associated co-

ordinate non-commutativity can be obtained from relativistic AdS3 via a certain Wigner-

Inönü contraction. It would be interesting to extend the analysis of conformal and super-

symmetries to the context of AdS/CFT correspondence [21], and to noncommutative

fields [35].
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